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Abstract
A key problem in mobile computing is providing people access to cyber-information
associated with their surrounding physical objects. Mobile augmented reality is one of
the emerging techniques that addresses this problem by allowing users to see the
cyber-information associated with real-world physical objects by overlaying that
cyber-information on the physical objects’ imagery. This paper presents a new
vision-based context-aware approach for mobile augmented reality that allows users
to query and access semantically-rich 3D cyber-information related to real-world
physical objects and see it precisely overlaid on top of imagery of the associated
physical objects. The approach does not require any RF-based location tracking
modules, external hardware attachments on the mobile devices, and/or optical/fiducial
markers for localizing a user’s position. Rather, the user’s 3D location and orientation
are automatically and purely derived by comparing images from the user’s mobile
device to a 3D point cloud model generated from a set of pre-collected photographs.
Our approach supports content authoring where collaboration on editing the content
stored in the 3D cloud is possible and content added by one user can be immediately
accessible by others. In addition, a key challenge of scalability for mobile augmented
reality is addressed in this paper. In general, mobile augmented reality is required to
work regardless of users’ location and environment, in terms of physical scale, such as
size of objects, and in terms of cyber-information scale, such as total number of
cyber-information entities associated with physical objects. However, many existing
approaches for mobile augmented reality have mainly tested their approaches on
limited real-world use-cases and have challenges in scaling their approaches. By
designing a multi-model based direct 2D-to-3D matching algorithms for localization, as
well as applying a caching scheme, the proposed research consistently supports near
real-time localization and information association regardless of users’ location, size of
physical objects, and number of cyber-physical information items. Empirical results
presented in the paper show that the approach can provide millimeter-level
augmented reality across several hundred or thousand objects without the need for
additional non-imagery sensor inputs.
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Introduction
Augmented Reality (AR) is an emerging technique that allows users to see real-world
physical objects and their associated cyber-information overlaid on top of imagery of
them. Mobile augmented reality is a variant of augmented reality that uses a mobile
device’s camera to capture real-world imagery and a mobile device’s sensors to derive
what cyber-information should be visible in the camera imagery, as shown in Fig. 1. A key
challenge ofmobile augmented reality is that it relies on precisely localizing a user in order
to determine what is visible in their camera view. The localization must be performed
in the field without constraining the individual’s whereabouts to a specially equipped
area such as custom augmented reality “caves” with pre-deployed external infrastructure
for location tracking. In other words, mobile augmented reality must work regardless of
users’ location and environment, and deliver relevant cyber-information precisely and
quickly.
Several key characteristics directly determine the reliability and utility of mobile aug-

mented reality approaches: 1) user localization, which determines the users’ viewpoint
and derives what real-world physical objects are in the current scene, in order to inter-
pret the user’s surrounding contexts and deliver relevant cyber-information, 2) the speed
of determining which cyber-information is associated with physical objects in order to
deliver/visualize the cyber-information in the correct position, 3) the robustness of the
system and ability to work with dynamically changing environments, and 4) the scalabil-
ity of the cyber-physical information association system, both in terms of physical scale,
such as size of objects, and in terms of cyber-information scale, such as total number of
cyber-information entities associated with physical objects. The purpose of this paper is
to address some of key research gaps in each of these areas that are not filled by current
state-of-the-art mobile augmented reality research approaches.
A key differentiator of this research is its use of image-based localization from smart-

phone camera sensors and ability to localize users with respect to arbitrary marker-less
3D objects. The proposed mobile augmented reality approach, called as Hybrid 4-
Dimensional Augmented Reality (HD4AR), that was first developed in our prior work
[1–5], provides reliable identification of the location and orientation of the user based
on photographs taken by existing and already available commodity smartphones. Videos
of the commercial implementation of the technology by Cloudpoint Inc., are available
on YouTube: https://www.youtube.com/user/PARworks. HD4AR not only provides the

Fig. 1 An example of mobile augmented reality applications. a Building facility management application,
b Tourism application

https://www.youtube.com/user/PARworks
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location and orientation of the user, but also provides high-precision visualization of
semantically-rich 3D cyber-information over real-world imagery in an augmented reality
(AR) format. Rather than using imprecise mobile GPS and/or wireless sensors, as in exist-
ing mobile AR approaches, HD4AR allows users to take pictures using smartphones for
accurate localization in 3D and high-precision augmentation.
A limitation of prior work was that the system was difficult to scale to multiple objects

without external non-imagery sensor inputs, such as GPS. These inputs were required
in order to determine which model to augment against. This paper extends our prior
work on HD4AR in the following ways: 1) the localization speed is further increased by
designing and developing a caching approach for direct 2D-to-3D matching and 2) a new
multi-model augmentation approach that scales to hundreds or thousands of 3D point
clouds in the system is implemented and tested. Further, the newmulti-model augmenta-
tion approach does not require external non-imagery sensor inputs and is based purely on
a new 2D-3D matching algorithm. The enhanced localization speed and impact of multi-
model based localization are discussed in Sections ‘Cached k-d tree generation for fast
direct 2D-to-3D matching in model-based localization’ and ‘Multi-model image-based
localization for blind localization requests’.
The remainder of this paper is organized as follows: Section ‘Related work’ discusses

prior work on mobile augmented reality and open research challenges, Section ‘Cached
k-d tree generation for fast direct 2D-to-3D matching in model-based localization’ dis-
cusses technical details of the HD4AR and its caching approach, Section ‘Multi-model
image-based localization for blind localization requests’ introduces our new multi-model
scalable augmentation approach that relies on combining and/or clustering the 3D point
cloud models used in the HD4AR, Section ‘Experimental results and validation’, presents
empirical results showing the speed and scalability improvements of the new approach,
and Section ‘Conclusion’ presents concluding remarks.

Related work
Over the past decade, many research projects related to mobile augmented reality have
focused on accurate user localization to realize mobile augmented reality on various types
of mobile devices. Based on the techniques used for estimating the location and pose
of the user’s mobile device, prior work on user localization can be roughly categorized
into: 1) sensor-based localization which tracks the position using GPS and/or inertial,
geomagnetic sensors attached to users, 2) marker-based localization which identifies the
mobile device’s camera position and orientation by leveraging pre-defined optical mark-
ers and image processing techniques, 3) visual simultaneous localization and mapping
(visual SLAM) which utilizes parallel threads for simultaneously tracking and mapping
visual features from images, and 4) model-based localization which uses pre-constructed
3D models of the physical world as a priori information to identify relative location and
orientation of mobile devices. Table 1 summarizes and evaluates each category of prior
research and presents qualitative assessment on localization accuracy and computational
complexity.
The majority of prior work on user localization has relied on positioning systems, such

as GPS or WLAN sensors [6, 7], or combined it with inertial measurers such as gyro-
scope sensors [8, 9]. Exploiting GPS sensors works well in outdoor environments but
does not support indoor environments, and is unreliable in dense urban environments
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Table 1 Qualitative comparison of localization techniques for mobile augmented reality systems

Metrics Sensor-based Marker-based Visual SLAM Model-based

Localization accuracy 1.5 – 35 ma 0.5 – 2 mmb 0.5 – 20 mmc 0.5 – 20 mmc

Localization speed 100 – 200 msec 20 – 140 msec 20 – 40 msec 5 – 240 sec

External infrastructure GPS satellite Optical markers Not needed Not needed

Resistant to drifts × √ × √
Scale well to large scene × × × √
Supports mobility

√ √ √ ×
aGPS Covered area;bMarkers within 3 m distance; cObjects within 10 m distance

where a clear line of sight to the GPS satellite is unavailable. In addition, the use of GPS
and inertial sensors in commodity smartphones introduces significant challenges due to
the limited accuracy of a GPS receiver and the noise presented in sensor data [10]. For
example, the noise in geomagnetic heading values can cause jitter in onscreen informa-
tion presentation. The indoor environment also imposes various challenges on location
discovery due to dense multipath effects and building material dependent propagation
effects. There are many potential technologies and techniques that are suggested to offer
the same functionality as a GPS indoors, such as WLAN, Ultra-Wide Band (UWB) and
Indoor GPS. By tagging users with appropriate receivers/tags and deploying a number
of nodes (e.g., access points, receivers, transmitters, etc.) at fixed positions indoors, the
location of tagged users can be tracked by triangulation [8, 11]. However, the accuracy of
using network infrastructure for image-based localization is still questionable and their
reliance on pre-installed infrastructures causing challenges in scalability.
In the meantime, several research groups have proposed marker-based mobile aug-

mented reality to remove the dependency on mobile sensors or pre-installed network
infrastructures [11–16]. These works track users’ position and orientation using image
processing techniques, i.e., matching the image captured by users’ mobile devices to spe-
cial, pre-defined 2D patterns (markers). Although marker-based localization has been
shown to work well in both indoor and outdoor environments and does not require addi-
tional sensors, visual markers need to be attached to every real-world physical object of
interest. Tagging hundreds to thousands of objects with 2D markers in the case of large-
scale environments, such as street scenes, or construction site, is impractical and does
not scale well to handle various distances to objects.
The advent of computer visionmethods over the past decade has led to new research on

the application of image-based localization methods for marker-less mobile augmented
reality systems. Due to the dependency on pre-installed infrastructure, inertial measurers,
and/or optimal markers, vision-based localization methods have gained significant atten-
tion in the computer vision community, as well as in the augmented reality community
[12, 17–29]. A group of these works have focused on visual Simultaneous Localization
andMapping (SLAM) [19, 22, 24], which simultaneously constructs a sparse 3Dmap from
visual features and localizes a device using generated map, with parallel threads of track-
ing and mapping (PTAM) [21] method. However, visual SLAMmethods mostly focus on
small-scale environments, such as a user’s office, and suffer from inconsistent loop clo-
sure problems when the scale becomes larger, such as outdoor buildings on the street.
Visual SLAM also requires the previously generated point cloud model to be hosted on
the client device. This minimizes opportunity for collaboration on editing the content
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stored in the 3D point cloud and thus content added by one user can not be immediately
accessible by others. In addition, in the context of augmented reality, visual SLAMmeth-
ods are difficult to associate arbitrary 3D cyber-information with physical objects as the
3D coordinates of the map vary from the devices and their initial locations of calibration.
As a consequence, visual SLAM methods require either an offline-learned 3D model or
manual association of 3D cyber-information, whenever users initiate the SLAM method
with different devices. Another drawback of visual SLAM methods is that the perfor-
mance of localization depends on the used devices. All the computations need to be done
on-board the devices, and thus, the localization speed relies on the computing power of
mobile devices. The dependency onmobile devices makes visual SLAMmethods difficult
to scale to large-scale mobile augmented reality systems.
Another category of computer vision based work has shown that a set of overlapping

images can be used to extract very accurate 3D geometry of stationary subjects, such as
buildings under construction, in form of 3D point cloud model. After extracting the 3D
point cloud of the subjects through a Structure-from-Motion (SfM) algorithm that esti-
mates the 3D position of the visual features through image feature extraction, pair-wise
matching, initial triangulation, and the Bundle Adjustment [25] optimization process, a
3D point cloud model can be used as a prior knowledge to compute 2D-to-3D correspon-
dences for precisely localizing mobile camera imagery [26–29]. Using a 3D point cloud
for user localization, i.e., model-based localization, permits mobile augmented reality sys-
tems to accurately estimate the 3D position and 3D orientation of the new photograph
purely based on the image [1–5], and therefore, it does not have any hardware constraints
on mobile devices, such as stereo cameras, GPS sensors, or motion tracking sensors. Fur-
thermore, recent advances in SfM [30–32] enable the easy creation of large scale 3D point
clouds from an unordered set of images and extend model-based localization methods to
large scenes such as street-level or city-level scale.
Although this body of computer vision research has shown the potential and high-

accuracy of model-based reasoning, the low speed of model-based localization due to
resource-intensive algorithms, such as feature extraction and 2D-to-3Dmatching, and the
lack of on-device localization methods make them difficult to use for mobile augmented
reality. In addition, very little research has examined the scalability issues of mobile
augmented reality and fast cyber-physical information association with model-based
localization. For example, Lim et al. [28] and Sattler et al. [29] proposed near real-time
model-based localization methods. However, their test cases consist of only a single 3D
point cloud model at room-level scale and their approaches were not true mobile aug-
mented reality as they were unable to provide cyber-information delivery/visualization
functionality on a mobile device. Several other recent efforts are focused on fast image-
based localization using previously generated point cloud models [29, 33, 34]. These
methods however do not address the problem of content authoring and their architecture
does not provide an opportunity for collaborative interaction among users (by content
authoring and query of information in near real-time). Applications of model-based local-
ization methods in augmented reality systems can be found in [17, 18]. These systems
were designed for context-aware architecture/engineering/construction and facility man-
agement applications to enhance construction progress monitoring processes. The 3D
point cloud model is generated from pre-collected photographs of a construction site and
the system uses the extracted model at street-level scale to localize users. Although their
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systems precisely determine the users’ location and deliver relevant construction project
information to end-users, it can not conduct user localization in the field for on-site
decision making purposes. With their systems, field personnel have to take photographs
and bring them back to the office to process each photograph. Even after field personnel
bring photographs back to the office, localizing a single photograph to see the cyber-
information overlaid on top of imagery takes tens of seconds with a high-end personal
computer at the office. Considering the applications and the current limits from these
works, a new approach, which takes at most 1–3 seconds regardless of operating scales
and provides augmented reality with commodity smartphones is needed.
Since model-based localization methods provide sufficient accuracy for high-precision

cyber-physical information association scenarios, such as identifying the buttons on a
car dashboard, overlaying construction information on walls, etc., this paper will focuses
on model-based localization techniques for high-precision mobile augmented reality sys-
tems. Further, these techniques do not require tagging physical objects or constraining
augmentation to 2D targets. However, these techniques have not been shown to work on
mobile devices at scales of hundreds of objects, which is a problem that we address in
this paper. As a consequence, the objectives of this paper are to approaches that we have
developed to overcome the challenges in model-based localization methods by optimiz-
ing both 3D reconstruction and the localization processes to make it possible to scale
them up to hundreds or thousands of objects and deliver augmented reality to mobile
devices in near real-time.

Cached k-d tree generation for fast direct 2D-to-3Dmatching inmodel-based
localization
HD4AR [1–5] is an approach for augmented reality that delivers annotated photos to
a user’s phone, as shown in Fig. 1. Photos are captured with user’s mobile devices and
uploaded to server. The server uses computer vision techniques to compare the photo
to the physical model and then determines what cyber-information is in view and where
it should appear. Cyber-information can include various forms such as textual informa-
tion (object purposes, price, building codes for construction elements), videos, audios,
etc. The server then sends the photo back to the user along with the associated cyber-
information. The final result displayed on the client side will be an annotated photo
providing rich cyber-information. One motivation of HD4AR is to help field engineering
in construction sites. For example, a field engineer is concerned about the construction
progress and quality of concrete foundation wall. It would be beneficial if the field engi-
neer can query for the needed building plan information directly from the site using a
picture of the foundation wall. With mobile augmented reality, the field engineer can use
mobile devices to localize his position with respect to the environment and view relevant
cyber-information overlaid on top of each associated construction elements. The overall
procedure of HD4AR is summarized in Figs. 2 and 3.
HD4AR works by generating a 3D point cloud from a set of overlapping photographs

of real-world physical objects with feature extraction, matching and SfM algorithms. The
3D reconstruction process combines different image features descriptors, and operate
across cores in a multi-core CPU and GPU architecture for fast operations. Once the 3D
physical model is available, a user can take a photo with a mobile device at a random loca-
tion. HD4AR uses a new image-based localization approach, which takes advantage of a



Bae et al. mUX: The Journal of Mobile User Experience  (2016) 5:4 Page 7 of 21

Fig. 2 Initial 3D reconstruction: bootstrapping of HD4AR

pre-constructed 3D point cloud of target scene to identify a mobile device’s relative loca-
tion and orientation. The localization process compares the new photo to the generated
3D physical model and estimates the extrinsic camera parameters to find the relative posi-
tion of the user’s camera. In addition, the HD4AR uses the client-server architecture to
further increase the localization speed. The smartphone as the client uploads new pho-
tographs to the server for localization and the major image processing load is located on
the server. The localization method using a direct 2D-to-3D matching algorithm takes at
most few seconds to localize a photograph. After recovering a complete pose of the user’s
camera, the server can decide what cyber-information should appear in the user’s photo-
graph and send the cyber object and their associated information to the client. The client
app will then draw cyber objects on top of the photograph.
Despite the accuracy and near real-time performance of HD4AR, however, the localiza-

tion speed needs to be further accelerated to provide a better user experience.With binary
feature descriptors, HD4AR still takes a few seconds to localize a single photograph [3, 4]
against a single target model.
To support near real-time cyber-physical information association at dynamically vary-

ing environmental scales, we present a new approach for further accelerating the HD4AR

Fig. 3 Image-based localization and augmentation of HD4AR
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localization/augmentation speed using an adaptive descriptor caching scheme. The orig-
inal HD4AR localization process requires a set of resource-intensive algorithms, such
as direct 2D-to-3D matching algorithms with performance that depends on the number
of 3D points in the 3D physical model. As a consequence, visually rich scenes, such as
outdoor data sets, typically have longer localization and augmentation times since the
resulting 3D physical models are dense due to a large number of textures from the scene’s
physical objects.
The matching complexity of the direct 2D-to-3D matching with a k-d tree proposed in

[3, 4] depends on the number of 3D points and the number of feature descriptors from
a new image to be localized. Specifically, the upper bound of this matching complexity
is:

O(MlogN) (1)

where N is the number of 3D points in the point cloud and M is the number of feature
descriptors from a new image. For outdoor data sets, the value of N is typically in the range
between 30,000 and 200,000, while the value of M is 10,000–20,000. As shown in Eq. 1,
larger values of N result in longer matching times. If users create a 3D physical model
of a street or city using several hundred pre-collected photographs, the resulting model
will consist of hundreds of thousands 3D points, and thus, a direct 2D-to-3D matching
algorithm may take tens of seconds. Therefore, methods of reducing the complexity of
this direct 2D-to-3D matching are needed.

Adaptively caching 3D image descriptors using localization patterns

Removing the dependency on the number of 3D points in 1 can be expected to signifi-
cantly reduce the overall matching time. To remove this dependency, we developed a new
approach that generates a constant size cached k-d tree from a set of 3D representative
descriptors and use it for direct 2D-to-3D matching. By caching and maintaining highly
queried 3D points in a smaller k-d tree, the matching time and localization time can be
reduced. Further, the cache can automatically adapt itself to cache the descriptors most
commonly visible in the locations that users commonly capture imagery for augmenta-
tion. That is, the cache can adapt itself to actual usage patterns to accelerate the most
common mobile augmentation perspectives.
With the proposed caching approach, a key question then becomes how to select

which 3D points and their corresponding representative descriptors should be located in
a cached k-d tree to provide a high localization success-ratio and accurate localization
results. To provide fast and reliable localization results, therefore, the proposed approach
exploits the fact that 1) HD4AR accurately and rapidly localizes a new photograph with
a small number of 2D-to-3D correspondences and 2) localization requests from users
may have a geospatial pattern, e.g., taking a picture of a single side of a building from the
side-walk and not arbitrary locations. As a consequence, the most frequently matched
3D points during the previous localizations and their corresponding 3D representative
descriptors are likely to be needed again in the future and are cached for future direct
2D-to-3D matching.
The procedure of caching 3D points and their corresponding representative descriptors

can be summarized as follows:
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1. After the 3D reconstruction process of HD4AR, create a “cache” list with size equal
to the number of 3D points in the 3D physical model. Each element of the list
consists of (hit count, Index of 3D point) pair. The list will is continually updated as
HD4AR is used to localize images.

2. After the direct 2D-to-3D matching stage in HD4AR localization, increase the hit
count by 1 for all 3D points which have 2D-to-3D correspondences with the newly
localized photo.

3. Sort the “cache” list in decreasing order. The upper part of the list contains the
most frequently matched 3D points.

4. Extract 3D points and their corresponding representative descriptors according to
the point indices of first N elements of the “cache” list. We have found that ranges
of N from 1000–10,000, depending on the size of the 3D physical model, are most
effective.

5. Generate a cached k-d tree using the extracted 3D representative descriptors and
use it for fast direct 2D-to-3D matching.

The localization process of HD4AR is slightly modified to handle fast direct 2D-to-3D
matching with a cached k-d tree. Upon receiving a new photograph from the client device,
the HD4AR server first matches image feature descriptors of the new photograph against
a cached k-d tree to find 2D-to-3D correspondences. If the number of correspondences is
less than 16 or HD4AR was unable to calibrate the camera with the resulting correspon-
dences, HD4AR runs a full image-based localization, as discussed in [3, 4], as a fallback
solution. After the localization process, HD4AR asynchronously updates the “cache” list
and re-generates the cached k-d tree using the updated information.
With a cached k-d tree, the complexity of direct 2D-to-3D matching is reduced to:

O(MlogN) −→ O(M) (2)

as N is constant and based on the size of the cache. Since M is the number of feature
descriptors of the new photograph to be localized and is completely a random number,
it is difficult to remove the dependency of the matching algorithm on M. However, by
creating and using a constant number 3D points in the cached k-d tree, the proposed
approach can reduce matching time and maintain localization success rates and accuracy,
as shown by the empirical results in Section ‘Experimental results and validation’.
Figure 4 visualizes the cached 3D points after 25 random localization requests from

client devices for a building on the Virginia Tech campus. The size of the cache was set
to 5000 points so that the number of nodes in the cached k-d tree could not exceed 5000.
From Fig. 4(b), we can infer that the user localization requests mostly took place at the
one side of the building in this test scenario and indeed had a geospatial pattern. The
cached k-d tree improves HD4AR localization performance by up to 262 %. The details of
the experimental results used to evaluate the cached k-d tree approach are discussed in
Section ‘Experimental results and validation’.

Multi-model image-based localization for blind localization requests
Our past work on mobile augmented reality presented in [1–4] assumed that there is only
a single 3D physical model in the system or users know which model should be used
for localization and augmentation, which is a significant limitation. For example, let us



Bae et al. mUX: The Journal of Mobile User Experience  (2016) 5:4 Page 10 of 21

Fig. 4 An example of a cached 3D physical model. a original 3D physical model, b caching the most
frequently matched 3D points from 25 localization requests. The size of the cache is fixed at 5000 points

assume that separate point cloudmodels were created for different locations/objects, such
as for dashboards of different cars. Users are required to choose the model from a list on
the client device to enable model-based localization with respect to the corresponding
3D physical model (e.g., show me augmented reality information related to a 2011 Honda
Pilot EX). This strategy is impractical when the number of physical models is enormous
and/or users do not know whichmodel should be used for localization and augmentation.
To overcome this issue and provide near real-time localization/augmentation service in
the presence of multiple 3D physical models, we developed a new approach, which can
handle localization requests that do not know the target physical model for localization.
Throughout this section, we will refer to localization requests that do not indicate the
target 3D physical model as “blin” localization requests.

Double-stage matching algorithmwith a single indexed k-d tree

Our prior approach for finding an appropriate model for blind localization required
matching a new image from a user’s mobile device to all 3D physical models in the server.
If any model successfully localized the photo (typically the first localizing model), that
model was used as the basis for the localization information returned to themobile device.
Obviously, this sequential matching approach is very time-consuming and is inefficient if
there are a large number of potential target models. Specifically, the upper bound of this
sequential matching complexity is:

O(KMlogN) (3)

where K is the number of models that exist in the server, N is the number of 3D points
in each physical model, and M is the number of feature descriptors from a new image to
be localized. For outdoor data sets we studied in [1–5], the value of N is typically in the
range between 30,000 and 200,000 while the value of M is 10,000–20,000.
Instead of time-consuming sequential matching, our new approach creates a single

indexed k-d tree and uses amatching heuristic algorithm to find the target model for blind
localization requests. Specifically, a single k-d tree is created by concatenating all 3D rep-
resentative descriptors from multiple models and model index information is imposed
on each 3D representative descriptor to track its model of origin. When a new image is
matched against this combined index, each time a descriptor matches the new image, a
match count is incremented for the corresponding model that contributed that feature
descriptor to the k-d tree. After the image is matched against this single indexed k-d tree,
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either the single 3D physical model that has the largest number of 2D-to-3Dmatches or all
models above a threshold number ofmatches (e.g., for scenes with elements frommultiple
models) are used for localization and augmentation. Then, the image-based localization
or caching approach discussed in Section ‘Cached k-d tree generation for fast direct
2D-to-3D matching in model-based localization’ can be used to localize a given photo-
graph within the model(s) selected for use as the basis of augmentation. The procedure of
this double-stage matching algorithm with a single indexed k-d tree can be summarized
as follows:

1. Concatenate all 3D representative descriptors from all 3D physical models in the
HD4AR server. Also, the model index contains a mapping from each descriptor to
its model of origin.

2. Upon receiving a blind localization request from the client, perform direct
2D-to-3D matching between the given image and the generated index k-d tree.

3. Using the derived 2D-to-3D correspondences from the matching process and the
model index information, count the number of 2D-to-3D matches for each 3D
physical model.

4. Take N models that meet a selection criteria, such as a “most matches” or “above
threshold” and then perform the image-based localization for eachmodel in parallel.

5. Select localization results which are within a re-projection error threshold and
return them to the client.

The proposed double-stagematching algorithm can be reduced to a single-stagematch-
ing as the result of first-stage matching already including the 2D-to-3D correspondences
of the target model (e.g., reuse the first stage descriptor matches in the second stage local-
ization process rather than recomputing these matches from the model’s individual k-d
tree). However, the reason for the double-stage matching is that several models can have
very similar visual features and thus are not clearly distinguished from each other through
first-stage matching, which may reduce the number of matches against any given individ-
ual model. For example, if two 3D physical models A and B are created for different sides
of the same building, it is possible that some of 2D-to-3D correspondences found in the
first-stage matching correspond to physical elements that appear in both models, how-
ever only the strongest matching descriptor in the entire k-d tree is considered a match
against the new image, even if multiple models have descriptors that could match against
the imagery of that physical element in the client’s photo. The reduced number of 2D-
to-3D correspondences then decreases the accuracy of localization. Therefore, we utilize
the first-stage matching results only for finding candidate target models and perform the
second-stage matching in parallel to get the most accurate localization results possible.
With the proposed approach, the complexity of blind localization is reduced to:

O(KMlogN) −→ O(MlogK + 2MlogN) (4)

where K is the number of models that exist in the server, N is the number of 3D points
in each physical model, and M is the number of feature descriptors from a new image.
The details of the performance gain provided by the proposed single indexed k-d tree
approach will be fully discussed in Section ‘Experimental results and validation’.
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Experimental results and validation
Experiment with cached k-d trees

This section presents results from experiments with the proposed caching approach
for fast model-based localization using direct 2D-to-3D matching. In order to assess
improvements provided by the proposed approach, HD4AR image-based localization was
performed on both cached models and non-cached models. In addition, only outdoor
models were considered during this experiment as the outdoor models typically have
larger number of 3D points and are more computationally expensive to use for local-
ization compared to indoor models. The details of the 3D physical models used in this
experiment are summarized in Table 2. In order to minimize feature extraction time dur-
ing localization, the BRISK (Binary Robust Invariant Scalable Keypoint) [35] descriptor
was used in this experiment. The outdoor photographs were collected by smartphones to
generate 3D physical models for this experiment and half of the photographs were ran-
domly selected to pre-train the “cache” list discussed in Section ‘Multi-model localiza-
tion for blind localization requests’. All experiments were conducted on a single Amazon
EC2 instance server with 22.5 GB memory and two Intel Xeon X5570 processors running
Ubuntu version 12.04. An NVIDIA Tesla M2050 graphic card was used for GPU compu-
tations. The fallback solution - returning to normal model-based localization when the
proposed caching approach failed to localize the photograph - was disabled during the
experiment to assess the effect of the cache size on the localization success ratio. During
the experiment, different cache sizes, i.e., 1000, 2000, 5000, and 10,000 points, were tested
to validate the effect of the cache size on the performance, localization success rate, and
the accuracy of the localization results.
Table 3 compares the results of the caching approach on the “patton” model, which

is a building on Virginia Tech’s campus with 46,318 3D points. As shown in Table 3,
the proposed caching approach achieved the fastest localization time with the smallest
cache size, while mean re-projection error remained at a similar level to that of localiza-
tions without cache. However, the localization success-ratio with smallest cache size, i.e.,
1000–2000 points, was lower than with the non-cached localization. This reduction in
the localization success rate is due to the fact that a pre-trained cache does not properly
cover the entire target scene as we selected random photographs for caching 3D points.
Nevertheless, the caching approach achieved an 80–98 % localization success ratio and
was 118-126 % faster than the non-cache localization in all cases. This means that the
cached approach can speed up 80–98 % of request by at least 118 %.
To further demonstrate the performance improvement of the cache-based matching,

we also measured elapsed times for each step in localization, i.e., feature extraction time,
and the matching/calibration time. As shown in Table 4, the matching and calibration
speed is improved by the caching approach, while the feature extraction time remains
constant. Therefore, we can conclude that the proposed approach, which uses a cached

Table 2 3D physical models tested for direct 2D-to-3D matching with a cached k-d tree approach

Model name Number of base images Number of 3D points Mean re-projection error
from 3D reconstruction

patton 40 46318 0.498 pixels

knu 50 33122 0.552 pixels

parliament 52 234343 0.606 pixels
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Table 3 Performance comparison of image-based localization approaches for the “patton” model

Package HD4AR HD4AR with caching approach

Cache size - 1000 2000 5000 10,000

Localization 49/50 40/50 44/50 49/50 49/50

success-ratio (98 %) (80 %) (88 %) (98 %) (98 %)

Mean number of 2145 134 228 438 748

2D-to-3D matches

Mean re-projection error 0.812 pixels 0.962 pixels 0.927 pixels 1.047 pixels 1.060 pixels

Mean localization time 2.312 sec 1.314 sec 1.484 sec 1.692 sec 1.836 sec

(sequential requests) (1×) (1.760×) (1.558×) (1.366×) (1.259×)

Mean localization time 0.754 sec 0.477 sec 0.547 sec 0.583 sec 0.627 sec

(parallel requests)a (1×) (1.581×) (1.378×) (1.378×) (1.203×)
aHandled 4 concurrent requests by multi-threading

k-d tree for matching, reduces overall localization time by reducing the search space of
direct 2D-to-3D matching. If we only consider the direct 2D-to-3D matching procedure,
the matching/calibration time was up to 2.887 times faster than the non-cache local-
ization, which is an even more significant speedup. Figure 5 visualizes the cached 3D
physical models with different cache sizes. As expected, the smaller cache sizes produced
sparser 3D point clouds, but the proposed approach successfully localized most of the
photographs even with these sparse cached 3D point clouds.
Tables 5 and 6 compare the detailed results of the caching approach on the “knu” model,

which 33,122 3D points. Again, the caching approach achieved the fastest localization
time with the smallest cache size, while mean re-projection error was slightly increased.
For the “knu” model, however, the localization success-ratio did not decrease for the
smaller cache sizes. As shown in Fig. 6, the cached 3D models were well-trained and cov-
ered the entire target scene even when cache size was 1000 points. The performance gain
of the caching approach is 118-158 % on localization and 131–226 % on direct 2D-to-3D
matching. As the “knu” model has fewer 3D points than “patton” model, the performance
gain was slightly lower. However, the proposed approach was faster than the non-cached
localization approach and achieved an overall localization time under 1 sec for the “knu”
model.
Finally, the proposed caching approach was applied to a large-scale model, i.e., the “par-

liament” model. The number of 3D points in the “parliament” model is 234,343 points.
Tables 7 and 8 compares the results of the caching and non-caching approaches on
the “parliament” model and Fig. 7 presents the cached 3D physical models with differ-
ent cache sizes. As shown in Tables 7 and 8, the cache-based localization significantly
improved the localization speed and matching speed for “parliament” model. The pro-
posed approach was 196–262 % faster than the non-cached localization approach and the
direct 2D-to-3D matching was up to 465 % faster. In addition, the mean re-projection

Table 4 Details of localization time for sequential requests on “patton” model

Package HD4AR HD4AR with caching approach

Cache size - 1000 2000 5000 10,000

BRISK feature extraction time 0.785 sec 0.785 sec 0.785 sec 0.785 sec 0.785 sec

Matching/localization time 1.527 sec 0.529 sec 0.698 sec 0.907 sec 1.050 sec
(performance gain) (1×) (2.887×) (2.188×) (1.684×) (1.454×)
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Fig. 5 Cached 3D physical models of the “patton” model. a cache size = 1000 points, b cache size = 2000
points, c cache size = 5000 points, and d cache size = 10,000 points

error was similar to that of the non-cache localization even with a cache size of 1000
points. From these results, we can conclude that the proposed caching approach improve
the performance of image-based localization on large-scale physical models and provides
reliable and accurate localization results.
To illustrate the outputs of these experiments in a mobile augmented reality format,

the 3D physical models associated with 3D cyber-information are shown in Fig. 8(a).
Figure 8(b) illustrates the HD4AR localization results in 3D space and corresponding aug-
mented photographs are shown in Fig. 8(c). In addition to experimental results shown in
Tables 3, 4, 5, 6, 7 and 8, the augmented photographs empirically show that camera poses
were successfully recovered, and thus the cyber-information, e.g., window information on
the “patton” model, is precisely overlaid on photographs from different viewpoints.

Table 5 Performance comparison of image-based localization approaches for the “knu” model

Package HD4AR HD4AR with caching approach

Cache size - 1000 2000 5000 10,000

Localization 50/50 49/50 50/50 50/50 50/50

success-ratio (100 %) (98 %) (100 %) (100 %) (100 %)

Mean number of 1204 87 157 338 561

2D-to-3D matches

Mean re-projection error 1.070 pixels 1.457 pixels 1.504 pixels 1.536 pixels 1.396 pixels

Mean localization time 1.347 sec 0.854 sec 0.959 sec 1.033 sec 1.138 sec

(sequential requests) (1×) (1.577×) (1.405×) (1.304×) (1.184×)

Mean localization time 0.507 sec 0.386 sec 0.414 sec 0.440 sec 0.470 sec

(parallel requests)(a) (1×) (1.313×) (1.225×) (1.152×) (1.079×)
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Table 6 Details of localization time for sequential requests on “knu” model

Package HD4AR HD4AR with caching approach

Cache size - 1000 2000 5000 10,000

BRISK feature extraction time 0.462 sec 0.462 sec 0.462 sec 0.462 sec 0.462 sec

Matching/localization time 0.886 sec 0.392 sec 0.497 sec 0.572 sec 0.677 sec

(performance gain) (1×) (2.260×) (1.783×) (1.549×) (1.309×)

Multiple-model based localization

Multi-model based localization was tested with the proposed double-stage matching
algorithm using a single indexed k-d tree discussed in Section ‘Multi-model image-based
localization for blind localization requests’. To emulate an environment wheremultiple 3D
physical models exist in the server, we used a total of 200 physical models generated from
the HD4AR 3D reconstruction process [3, 4]. The details of test scenarios are summarized
in Table 9. The server-side of the HD4AR for localization was running on Ubuntu version
12.04 with 8 GB memory and a 4-core Intel i5-2520M processor. Also, BRISK descriptors
were used for this experiment.
In order to validate that the proposed double stage matching approach can successfully

find target models for blind localization requests, a group of photos that could be success-
fully localized against any single model were tested without designating the target models.
In addition, only the performance of sequential localizations from a single client device
were measured. Table 10 shows the overall results of the proposed double-stage match-
ing approach for multi-model based localizations. As shown in Table 10, the proposed
double-stage matching algorithm with a single indexed k-d tree approach successfully
found target models for all blind localization requests regardless of the number of mod-
els in the system. In addition, the proposed approach rapidly and accurately localized all
tested photographs even in the presence of 200 models in the system. In comparison, all

Fig. 6 Cached 3D physical models of the “knu” model. a cache size = 1000 points, b cache size = 2000 points,
c cache size = 5000 points, and d cache size = 10,000 points
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Table 7 Performance comparison of image-based localization for “parliament” model

Package HD4AR HD4AR with caching approach

Cache size - 1000 2000 5000 10,000

Localization 40/40 37/40 37/40 40/40 40/40

success-ratio (100 %) (92.5 %) (92.5 %) (100 %) (100 %)

Mean number of 465 104 178 337 442

2D-to-3D matches

Mean re-projection error 0.897 pixels 0.990 pixels 0.906 pixels 0.858 pixels 0.872 pixels

Mean localization time 2.693 sec 1.027 sec 1.134 sec 1.301 sec 1.377 sec

(sequential requests) (1×) (2.622×) (2.375×) (2.070×) (1.956×)

Mean localization time 0.847 sec 0.345 sec 0.369 sec 0.415 sec 0.439 sec

(parallel requests)(a) (1×) (2.455×) (2.295×) (2.041×) (1.929×)

pastmodel-basedmobile augmented reality techniques published in prior work have been
demonstrated with only a single model. The mean localization times for multi-model
based localizations were in the range between 1.360–2.623s and the mean re-projection
errors were within 1.507–1.532 pixels.
To further demonstrate the scalability improvement of the double stage matching

approach, we also measured the elapsed times for each step in localization, i.e., target
model searching time, feature extraction time, and the matching/calibration time. As
shown in Table 11, the target model searching time, which corresponds to the first-stage
matching time in the proposed approach, only took 0.482–1.799 sec in our test sce-
narios where the number of models are varied from 10 to 200. As expected in Section
‘Multi-model image-based localization for blind localization requests’, the target model
searching time is not proportional to the number of models. The number of models
increased 20× and the search time only increased by roughly 3×. Even in the presence
of 200 models, the target model search and localization with the proposed approach took
under 2 sec. From experimental results shown in this section, we can conclude that the
proposed approach successfully handles blind localization requests and provides near
real-time localization/augmentation in the presence of multiple 3D physical models in the
system. In addition, the experimental results imply that the double-stage matching algo-
rithm with a single indexed k-d tree approach can be extended to hundreds of 3D physical
models without significantly reducing localization performance.We believe that the tech-
nique could scale to 1000s of models, but time constraints on collecting and building
models prevented us from testing above 200 models.

Conclusion
In this paper, we presents a new vision-based context-aware approach for mobile
augmented reality that allows users to query and access semantically-rich 3D cyber-
information related to real-world physical objects and see it precisely overlaid on

Table 8 Details of localization time for sequential requests on “parliament” model

Package HD4AR HD4AR with caching approach

Cache size - 1000 2000 5000 10,000

BRISK feature extraction time 0.571 sec 0.571 sec 0.571 sec 0.571 sec 0.571 sec

Matching/calibration time 2.122 sec 0.456 sec 0.563 sec 0.730 sec 0.806 sec

(performance gain) (1×) (4.654×) (3.769×) (2.907×) (2.633×)
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Fig. 7 Cached 3D physical models of the “parliament” model. a cache size = 1000 points, b cache size = 2000
points, c cache size = 5000 points, and d cache size = 10,000 points

top of imagery of the associated physical objects. We design a multi-model based
direct 2D-to-3D matching algorithms for localization and apply a caching scheme. The
approach supports near real-time localization and information association regardless
of size of physical objects, users location, and number of cyber-physical information
items.

Fig. 8 Localization/augmentation results for building-scale outdoor data sets. a Target 3D model associated
with 3D cyber-information, b Image-based localization result from the HD4AR server, and c Augmentation
results from the HD4AR mobile client. Point cloud models shown are improved for density using multi-view
stereo algorithm
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Table 9 3D physical model specifications for multi-model based localization experiments

Number of 3D models Total number of 3D points Total point cloud size

10 484006 201.21 MB

20 1238784 503.33 MB

60 2647207 1.07 GB

100 3374138 1.38 GB

200 4095305 1.70 GB

Based on results presented in this paper, we can conclude that the cached k-d tree
generation approach can significantly accelerate model-based mobile augmented reality
approaches. No existing prior work to date attempts to improve the speed of model-
based localization by tackling the complexity of direct 2D-to-3D matching. By removing
the dependency on number of 3D points, the proposed approach provides near real-time
localization/augmentation results regardless of number of 3D points in the 3D physical
model. With the proposed approach, the localization time now takes at most 1.5 sec for
large-scale physical models. In addition, it still achieves high-precision localization with
an augmented reality overlay visualization error of at most a few pixels.
The results also show that the proposed double-stage matching algorithm using a single

indexed k-d tree can scale up tomobile augmented reality experiences that simultaneously
rely on hundreds of 3D physical models. Prior approaches have only scaled up to a single
model. As shown in Section ‘Experimental results and validation’, the proposed double-
stage matching algorithm can rapidly find target models for blind localization requests
and successfully localize the photographs under 3 sec with 200 physical models in the
system.
By combining these solution approaches, which simplify and speed up the process

of accurately obtaining relevant cyber-information for mobile augmented reality experi-
ences, the output of this research can be used in many practical context-aware mobile
applications, such as construction progress monitoring. Since the solution approaches
work with commodity smartphones and do not depend on external devices, such as GPS
satellites, optical markers, or geomagnetic sensors, highly-contextual mobile experiences
can be built simply and cheaply.

Future work

While this research presents promising results toward near real-time high-precision
mobile augmented reality by developing hybrid mobile/cloud model-based localization
on SfM-based 3D physical models, some research challenges need to be addressed to
further improve these mobile augmented reality experiences:

Table 10 Performance comparison of multi-model based localization

Number of models 10 20 60 100 200

Localization 235/235 235/235 235/235 235/235 235/235

Success-ratio (100 %) (100 %) (100 %) (100 %) (100 %)

Mean number of 523 524 537 537 537

2D-to-3D matches

Mean re-projection error 1.531 pixels 1.532 pixels 1.513 pixels 1.511 pixels 1.507 pixels

Mean localization time 1.360 sec 1.568 sec 2.054 sec 2.343 sec 2.623 sec
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Table 11 Details of localization time from the proposed single indexed k-d tree approach

Number of models in the system 10 20 60 100 200

Target model searching time 0.482 sec 0.738 sec 1.222 sec 1.509 sec 1.799 sec

BRISK feature extraction time 0.570 sec 0.573 sec 0.571 sec 0.578 sec 0.566 sec

Matching/calibration time 0.308 sec 0.257 sec 0.261 sec 0.256 sec 0.258 sec

1. Real-time localization/augmentation: although the HD4AR achieves near real-time
localization regardless of environmental constraints, some applications, such as
AR-based video gaming, may require real-time augmented reality rather than still
photo AR. A possible solution is to develop a hybrid approach that uses HD4AR for
the at-scale search, identification of target models in the scene, and initial 6DOF
positioning and then a faster on-device tracking approach to provide real-time
visualization. For example, key frames in the camera video stream could be
localized through the model-based approach proposed in this study while
intermediate frames are localized through an on-device tracking approach that
relies on the HD4AR localization and model search results.

2. Minimal number of base images: we typically collected 50–100 images or 3-5s of
1080p video for each target scene to produce 3D physical models. These imagery
capture heuristics came from experience, and therefore, the relationship between
number of base images and the quality of 3D point cloud should be further
analyzed to guide users to in determining the minimal number of base images
needed for reliable model-based localization.

3. Robustness against reflective or translucent surfaces: HD4AR is based on
intensity-based image feature descriptors, such as SIFT, SURF, FREAK, or BRISK,
which compare the intensity of pixels to discover orientation and response of
feature points. As a consequence, the proposed approach may not work well with
images that only show reflective surfaces such as metals, mirrors, or glass curtain
walls of a building. These surfaces reflect all surrounding scenes and make the
system difficult to find correspondences among the images. One possible method
to address this is to require images to be taken farther from these elements so other
non-reflective elements can also be presented in the scene.

Videos of the commercial implementation of the technology by Cloudpoint Inc., are
available on YouTube: https://www.youtube.com/user/PARworks.
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