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Abstract
Falling, and the fear of falling, is a serious health problem among the elderly. It often
results in physical and mental injuries that have the potential to severely reduce their
mobility, independence and overall quality of life. Nevertheless, the consequences of a
fall can be largely diminished by providing fast assistance. These facts have lead to the
development of several automatic fall detection systems. Recently, many researches
have focused particularly on smartphone-based applications. In this paper, we study
the capacity of smartphone built-in sensors to differentiate fall events from activities of
daily living. We explore, in particular, the information provided by the accelerometer,
magnetometer and gyroscope sensors. A collection of features is analyzed and the
efficiency of different sensor output combinations is tested using experimental data.
Based on these results, a new, simple, and reliable algorithm for fall detection is
proposed. The proposed method is a threshold-based algorithm and is designed to
require a low battery power consumption. The evaluation of the performance of the
algorithm in collected data indicates 100 % for sensitivity and 93 % for specificity.
Furthermore, evaluation conducted on a public dataset, for comparison with other
existing smartphone-based fall detection algorithms, shows the high potential of the
proposed method.

Keywords: Fall detection, Smartphone, Tri-axial accelerometer, Threshold-based
method

Introduction
Statistics and facts related with falls in elderly people is somewhat worrying. For instance,
approximately one in every three people, over the age of sixty five, experience a fall, at
least once a year, and these are the leading cause of hospitalization for this age group [16].
Another very concerning aspect of falls, among the elderly, is their reluctance to seeking
treatment after suffering an injury. Moreover, the economic impact of falls was estimated
in 2000 to be $US19 billion in the US only [15]. All of this is even more relevant when one
considers that the number of old people (above 60 years old) in the world is expected to
increase from 841 million in 2013 to more than 2 billion in 2050 [8].
The previous findings, stress the necessity for healthcare providers to focus on mea-

sures to reduce the risk and severity of falls-related injuries. Automatic fall detection
systems are an important component in this effort and are a current major research topic.
The features generally used for fall detection are the magnitude of the acceleration, pos-
ture monitoring, change in orientation, vertical velocity, angular velocity, and angular
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acceleration [3, 4, 6, 12, 18]. Automated image analysis systems based on video camera
images have also been proposed [13]. Other approaches like the GoSafe system (http://
www.lifelinesys.com/content/), known as PERS (personal emergency response system), a
commercial wearable device from Philips, allow users to push a emergency button in the
event of a fall. However, these solutions have some drawbacks. The wearable devices are
not well tolerated by the elderly while camera-based solutions can not be applied without
violating privacy.
In response to some of these issues, many researchers are focusing their efforts on

smartphone-based applications. In fact, the increasing popularity of smartphones makes
them an attractive platform for the development of new fall detection systems. Moreover,
smartphones are well accepted, even among the elderly population, and the already built-
in communication facilities, including, e.g., SMS (short message service) and GPS (global
position system), makes them a perfect candidate for an automatic fall detection system
that covers the detection and communication stages. The increasing number of built-in
sensors, such as accelerometer, gyroscope, andmagnetometer, is also highly advantageous
to researchers. On the other-hand, smartphone systems also involve many challenges.
Issues like the huge variety of devices, and inherently the massive amount of software and
hardware, make the task of developing new algorithms a formidable challenge.
Smartphone-based fall detectors have already been presented in the literature [1, 7, 19]

and some dedicated applications, like e.g. the iFall [14], are available in the Android Play
Store. A common aspect in all of these studies is the use of threshold-based algorithms
and accelerometer data. For instance, in [7] four thresholds are proposed for the differ-
ence between the maximum and minimum values of the magnitude of the acceleration
vector and vertical acceleration in four defined time windows. In the algorithm described
in [1], a fall is simple defined as a peak in the magnitude of the acceleration higher than a
threshold followed by a time period where the magnitude of the acceleration is lower than
another threshold. The reason for using thresholdmethods and acceleration-only features
aims at reducing battery drain. Threshold methods have low complexity and computa-
tional cost, while the accelerometer has lower power consumption when compared e.g.
with the gyroscope. Note that accelerometers are also cheaper than gyroscopes and, there-
fore, more common in smartphones. For further review on fall detection methods and
challenges we refer to [9, 11].
The purpose of this paper is to describe a new fall detection algorithm, as well as the

evaluation of its performance in collected data and in a public dataset. The proposed
algorithm is devised to detect a fall (a sudden incontrollable descent) suffered by the
smartphone user. It relies only on the data information provided by the smartphone built-
in accelerometer (it does not use other built-in sensors, such as gyroscopes and magnetic
sensors, or other sensors such as camera, proximity sensor and microphone) and in addi-
tion it is a threshold-based algorithm. These two characteristics are of utmost importance
since they help reducing battery power consumption, a crucial issue for smartphone users.
In effect, fall detection algorithms are to be incorporated in a more general assistance sys-
tem. This system has already a considerable battery power consumption, so it is important
to develop fall detection algorithms that are less complex and hence require low compu-
tational power, in order to increase the battery life time, which is obviously an advantage
for the smartphone user. In addition, the tests conducted for evaluating the algorithm
(and reported herein), as well as the currently on going tests in real environments (in
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senior care or senior monitoring contexts, both residential or domiciliary) carried out by
our collaborative partner (http://oncaring.com/) demonstrate its very good performance.
Moreover a modified algorithm is also described in order to further increase the battery
life-time. Furthermore, experiments conducted on the public dataset MobiFall [17] con-
firm the good performance of the proposed fall detection algorithm and its superiority
over other existing algorithms based on smartphone sensors, for fall detection.
The remainder of the paper is organized in five sections. In Section “Experimental

setup”, we detail the material and experimental setup, in Section “Feature extraction”
we present the features extracted for analysis, and in Section “Fall detection algorithms
and results” algorithms and numerical results are discussed. In Section “Support vector
machine classifier” we describe the results obtained with a support vector machine binary
classifier. In Section “Comparative study” a comparative evaluation, in a public dataset,
with three other fall detection methods is presented. Finally, we draw some conclusions
and discuss future research directions.

Experimental setup
The smartphones used were a Samsung Galaxy Nexus and a Samsung Galaxy Nexus S,
both equipped with the Android operating system (version 4.1.2). These devices have a
wide range of sensors, including triaxial accelerometer, triaxial gyroscope, and magne-
tometer. In addition to these sensors, Android also provides, e.g., the linear acceleration
and the orientation of the device. These quantities are usually obtained through the fusion
of sensor data, however, the exact method is not available, and the actual implementation
may differ from device to device. For completeness, a very brief description of these sen-
sors and quantities is given herein.We also refer to Fig. 1, where the smartphone reference
frame (x-, y- and z- axis) and orientation angles (roll, pitch and azimuth) are depicted.
The accelerometer sensor measures the acceleration force in meters per square sec-

ond (m/s2) applied to the device along each axis. We recall that this acceleration signal
includes the effect of gravity. The gyroscope returns the angular velocity in radians per

Fig. 1 Smartphone reference frame and orientation angles
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second (rad/s), i.e., the rate of rotation around each one of the three axes. The magne-
tometer measures the magnetic field in microtesla (μT), and it is used to calculate the
azimuth. The orientation sensor gives the rotation angles (roll, pitch, and azimuth) of
the smartphone with respect to the correspondent axis, and their calculation involves
the accelerometer, magnetometer and gyroscope sensors. Finally, the linear acceleration
is the acceleration without gravity, also known as dynamic acceleration. This linear accel-
eration can be obtained by projecting the acceleration into a fixed coordinate system,
using the orientation information, and removing the known gravity vector. Alternatively,
a high-pass filter can be applied, for deriving the linear acceleration.
The data reported in this subsection were collected by the company Oncaring (http://

oncaring.com/). The data-set consists of simulated falls and ADL (activities of daily
living). The simulated falls were performed by two young adults, and for safety reasons
a mattress was used. The ADL collection involved six individuals. During these exper-
iments, the smartphone was positioned in the trouser front pocket or in a belt worn
around the hip. A total of 74 falls and 136 ADLwere recorded overall. Among these, 6 falls
and 37 ADL were obtained with the Samsung Galaxy Nexus S. The complete list of ADL
activities is given in Table 1. This set of ADL was chosen in such a way that it would be
representative of daily activities that can potentially cause false positives in fall detection
threshold-based algorithms relying only on the acceleration sensor.
For the movements, the signal of the gyroscope, accelerometer, liner acceleration, and

orientation were recorded. The accelerometer and gyroscope amplitude range was set at
±20 m/s2 and ±50 rad/s, respectively. The sampling frequency f was fixed at 100 Hertz
(Hz) in the Samsung Galaxy Nexus and at 50 Hz in the Samsung Galaxy Nexus S. The
acquired data is inherently affected by noise measurement. Here, we applied a first-order
exponential low-pass filter (cut-off frequency of 5 Hz) for smoothing and noise reduction.
The choice of this type of filter is motivated by their simplicity and suitability for real-time
implementation.

Feature extraction
The chosen features analyzed in this paper for fall detection are described in this section.
We remark that these features, which correspond to appropriate quantifications of the
sensors’ signals, are then used for a binary classification of the different movements into
fall or non-fall. This decision is based on a simple thresholding approach, that is after-
wards explained in Section “Fall detection algorithms and results”, by checking for each
movement the different features sequentially.
At time tn we denote the accelerometer data by An =

(
An
x ,An

y ,An
z

)
, for n = 1, . . . ,N ,

withN the total number of samples, represent by Ln =
(
Lnx , Lny , Lnz

)
the linear acceleration

signal, and the output of the orientation sensor, roll, pitch, and azimuth angles, respec-
tively, is represented by On =

(
On
r ,On

p,On
a

)
. The measurements of the gyroscope at time

tn are denoted by Gn =
(
Gn
x ,Gn

y ,Gn
z

)
. Moreover, we also introduce the vectors

A = (An)Nn=1, L = (Ln)Nn=1, O = (On)Nn=1, and G = (Gn)Nn=1

as well as

Ax = (
An
x
)N
n=1 , Ay =

(
An
y

)N
n=1

, Az = (
An
z
)N
n=1 ,
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Table 1 List of ADL movements and simulated falls performed by the volunteers

ADL Total number

Walk 14

Walk downstairs and upstairs 9

Run 5

Sit down and stand up from a chair 15

Sit down and stand up from the floor 15

Sit down and stand up from a low stool 4

Sit down and stand up from a couch 4

Lie down and stand up from the bed 15

Lie down and stand up from the floor 6

Pick an object off the floor 8

Get in and out of the tub 5

Bump into someone 7

Sit down abruptly on a chair 8

Roll over on the floor 4

Kneel down to the floor 8

Get in and out of the car 5

Vertical jump 4

FALLS Total number

Backward fall ending lying in lateral position 6

Backward fall ending lying 4

Forward fall with arm protection ending lying 7

Forward fall ending lying in lateral position 11

Lateral fall to the right ending lying 4

Lateral fall to the left ending lying 5

Lateral fall against wall ending lying 6

Fall from a chair ending lying 10

Run and fall ending lying 11

Walk and fall ending lying 10

and similar definitions apply to Lx, Ly, Lz, to Or , Op, Oa and to Gx, Gy, Gz. In
addition we remark that the number of samples can vary with the frequency of the
signal.

Feature SV (sum of the components of the acceleration vector) The first feature used
to distinguish between fall and ADL is the sum of the absolute value of the components
of the acceleration vector (SV ), which is defined as follows,

SV = (SVn)Nn=1, SVn = |An
x | + |An

y | + |An
z |, (1)

with | · | representing the absolute value (we remark that the norm in (1) is equivalent to
the Euclidean norm

√
|An

x |2 + |An
y |2 + |An

z |2). A typical example of this quantity for a fall
event is shown in Fig. 2. The peaks in SV occur as a consequence of the impact of the
human body with the ground. In the same figure, we also plot the measured SV for an
ADL. Note the small maximum for SV in the latter.
Although SV seems to be an important feature for fall detection it might not be enough

for distinguishing correctly a fall from a non-fall. Therefore extra features, as the following
ones, are necessary for a more correct classification.
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Fig. 2 The SV pattern for a simulated “backward fall ending lying” (left) and the ADL “sit down and stand up
from the floor” movement (right)

Feature AV (angle variation) It is expected that during a fall event, the acceleration
signal will exhibit rapid and significant variations along all the three directions x, y and
z. In order to quantify this behavior we define a new fall feature based on the change
of the angle between two consecutive acceleration readings. This quantity, herein called
orientation variation (OV ), is defined by

AV =
[
cos−1

(
An · An+1

‖An‖‖An+1‖
)]

180
π

, for n = 1, . . . ,N − 1, (2)

where ‖.‖ denotes the Euclidian norm, the dot symbol in the numerator stands for the
scalar product of two vectors and 180

π
results from radians to degrees conversion. As an

example, Fig. 3 shows the feature AV corresponding to the acceleration signal of a simu-
lated fall and a particular ADL, for comparison. The analysis of both figures reveals that
during the fall event, AV reaches higher values than during the ADL task. For the fall the
maximum value is bigger than 30 degrees (°) and smaller than 7° for the ADL.

Feature CA (change in angle) Another feature that we have studied is the change in
orientation of the device before and after a fall. We implement this feature by estimating
the angle between two acceleration vectors. First, we define a time window of size 4s

Fig. 3 Plot of AV resulting from a simulated fall (left) and the ADL “sit down and stand up from a chair”
movement (right)
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centered at the predicted fall time, that corresponds to the maximum of feature SV. Then,
we create two vectors, Āb and Āe, by averaging the acceleration data over the first second
and last second of the window of size 4s, respectively. Finally, as in (2), we define the angle

CA =
[
cos−1

(
Āb · Āe

‖Āb‖‖Āe‖

)]
180
π

. (3)

We expect a significant difference between the initial and final position of the device,
and this variation must be reflected in the value of CA. Moreover, we take a 4s window
because we estimate that a fall lasts approximately 2s.

Feature VA (vertical acceleration) The vertical component of acceleration (VA), is a
feature usually considered in fall detection algorithms [4, 7]. It is defined by

VA = L · g
‖g‖ , (4)

where g is the gravity vector, which can be calculated by subtracting the linear acceleration
from the acceleration, that is g = A − L. VA provides a measure for the magnitude of
the linear acceleration L in the direction of the earth gravity vector. Thus, it is plausible
to expect that a fall will produce large values of VA, which may be useful to separate fall
from non-fall. This prediction is illustrated in Fig. 4 that shows the profile of VA during a
fall and during an ADL movement.

Feature OD (orientation angles) Now we explore the orientation sensor, by defining a
feature that is based on the difference of consecutive values of the sensor output, the roll,
pitch and azimuth angles. More precisely, we measure the quantity

OD = 1
�t

[
|On+1

r − On
r | + |On+1

p − On
p| + |On+1

a − On
a|

]
, for n = 1, . . . ,N − 1, (5)

where �t is the inverse of the signal frequency and |.| stands for the absolute value. With
this approach we attempt to capture the rapid change in orientation that occurs during
a fall. The pitch (Op) and azimuth (Oa) angles belong to the interval [-180°, 180°] and
[0°, 360°], respectively. Note that when a measured value oversteps these limits, a dis-
continuity or jump of 360° occurs. For instance, the azimuth angle jumps from 0° to 360°
(or 360° to 0°) when the measured value is approaching 0° (or 360°). Therefore before

Fig. 4 The vector VA resulting from a simulated “forward fall ending lying in lateral position” (left) and the
ADL “sit down and stand up from a chair” movement (right)
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calculating (5), it is necessary to correct the pitch and azimuth angles. Regarding the roll
angle it does not show this behavior, and its values change continuously in the interval
[-90°, 90°].
Figure 5 displays the OD feature for a fall and an ADL movement, that is similar to an

actual fall. In this particular example, the difference in magnitude between the two cases
is evident.

Feature SVG and SVGA (gyroscope) Finally, we consider the information of the gyro-
scope sensor. What we predict is that a fall leads to significant values in the angular
velocity and angular acceleration, when compared to an ADL movement. Moreover, in
comparison with ADL tasks, those values should be sufficiently large to provide an accu-
rate distinction between fall and ADL. As mentioned in “Experimental setup” Section,
the angular velocity is available as the output of the gyroscope sensor. The components
of the angular acceleration, denoted herein by GAn = (GAn

x ,GAn
y ,GAn

z ) at time n, can be
approximated by forward finite differences, that is

GAn
x = Gn+1

x − Gn
x

�t
, for n = 1, . . . ,N − 1, (6)

(similarly definitions apply toGAn
y andGAn

z ). Based on this reasoning, we study the values
of the following two features, the sum of the absolute value of the components of the
angular velocity

SVG = (
SVn

G
)N
n=1 , SVn

G = |Gn
x | + |Gn

y | + |Gn
z |, (7)

and the sum of the absolute value of the components of the angular acceleration

SVGA = (
SVn

GA
)N
n=1 , SVn

GA = |GAn
x | + |GAn

y | + |GAn
z |. (8)

The SVG curves displayed in Fig. 6 reveal that, at least in this case, our expectations were
confirmed. In the simulated fall, the maximum value of SVG is bigger than the double of
the value of SVG obtained in the ADL. The analysis of SVGA, not shown here, allows to
draw an identical conclusion.

Fall detection algorithms and results
In this section we describe and analyse four fall detection threshold-based algorithms,
relying on the features previously defined. We remark that in this work, threshold based

Fig. 5 The vector OD for a simulated “backward fall ending lying in lateral position” (left) and the ADL “pick an
object off the floor” movement (right)
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Fig. 6 The calculated SVG for a simulated “lateral fall against wall ending lying” (left) and the ADL “walk”
movement (right)

algorithms are chosen, because of their simplicity, low computational cost, which con-
sequently does not increase too much the battery power consumption, a practical and
crucial aspect for smartphone users.
Besides the evaluation of the performance of these algorithms, a main goal in this

section is also to understand if the use of the linear acceleration, orientation or gyro-
scope data can significantly improve the performance of the fall detection algorithm that
relies only on the acceleration sensor, but somehow incorporates the information about
the orientation of the device. Therefore, we consider the following algorithms.

• Alg1 that only uses acceleration data by combining sequentially the features SV, AV
and CA.

• Alg2 that consists of Alg1 plus feature VA (the vertical acceleration).
• Alg3 that consists of Alg1 plus the orientation feature OD.
• Alg4 that consists of Alg1 plus the gyroscope information features SVG and SGGA.

Flowchart of Alg1: Let SW2s be a sliding window of size 2s and Csv, Cav and Cca be 3 pre-
defined and fixed thresholds.

SW2s
↓ (1)

filter the acceleration with a low-pass filter
↓ (2)

maxSW2s SV = SV (tsv) > Csv ?
(3)
−→

{
No → End, no fall detected in SW2s.
Yes → go to i).

i) - max[tsv−1,tsv+1] AV > Cav ?
(4)
−→

{
No → End, no fall detected in SW2s.
Yes → go to ii).

ii) - Compute CA
in [tsv − 2, tsv + 1] and [ tsv + 1, tsv + 2]

CA > Cca ?
(5)
−→

{
No → End, no fall detected in SW2s.
Yes→ End and a fall is detected in SW2s.
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Algorithms Alg2, Alg3, and Alg4 correspond to variants of Alg1 obtained by including
extra different features, therefore we omit their descriptions, they are only briefly out-
lined, because of the their similarity with the structure of Alg1. In all cases, these extra
features are calculated in the time window [ tsv − 1, tsv + 1] as in the computation of AV .
For Alg2, we monitor the maximum value and the l1-norm of VA (defined by

∑N
n=1 |VAn|

and normalized by the total number of points N, whenever necessary, to account for fre-
quency differences). For Alg3 we measure the maximum value of OD, and for Alg4 the
maximum values of the features SVG and SVGA are considered. Moreover, as described
above, three thresholds are used in Alg1, Csv, Cav, and Cca. Besides these three thresholds,
we also define the thresholds Cva and Cl1

va for Alg2, Cod for Alg3 and Csvg and Csvga for
Alg4, with obvious meaning.
All these algorithms were tested on the data-set described in Table 1 of “Experimental

setup” Section. The performance of the algorithms was quantified by using sensitivity and
specificity measures.
Concerning the choice of the thresholds, they are fixed in order to maximize the sensi-

tivity. Among all the values we choose, for each feature, the maximal value (which is the
threshold) such that 100 % of sensitivity is obtained. This high level of sensitivity is essen-
tial in fall detection systems. The used threshold values as well as the maximum value for
all the falls recorded are shown in Table 2.
The results obtained for each algorithm, in this dataset, are summarized in Table 3 and

Table 4 reveal that Alg1 performs well with 92.65 % for the specificity (which corresponds
only to 10 FP). Comparing these results with the performance of algorithmsAlg2,Alg3 and
Alg4 it is possible to conclude that apparently the features used in Alg1 are good enough
and no significant advantage is gained by increasing the number of features with extra
sensor data.
This conclusion is very important when we take into consideration the computational

and power costs. We cannot neglect the limited computational and battery power of
smartphone devices. In fact, the power required by the gyroscope, used in Alg2, Alg3, and
Alg4, is much higher than the power demand of the accelerometer sensor used in Alg1.
To gain more insight about Alg1 and the influence of the 3 different features SV, AV

and CA, we present in Table 5 the sensitivity and specificity results for different features
combinations. In particular, we observe that none of these 3 features can be removed
without substantially reducing the sensitivity. We also note that feature AV has a strong
positive impact in the algorithm performance. To the best of authors knowledge this is
the first time that the feature AV is used in a fall detection algorithm.

Table 2 Features and thresholds adopted in the fall detection algorithms

Feature Fall value Fall description Threshold

SV 23.45 Fall from a chair ending lying Csv = 23

AV 18.53 Backward fall ending lying Cav = 18

CA 66.33 Forward fall with arm protection ending lying Cca = 65.5

VA 4.93 Fall from a chair ending lying Cva = 4.72

VA 1.49 Backward fall ending lying Cl1va = 1.48

OD 253.88 Forward fall with arm protection ending lying Cod = 250

SVG 6.02 Backward fall ending lying Csvg = 5.9

SVGA 111.21 Backward fall ending lying Csvga = 110
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Table 3 Sensitivity and specificity results for each algorithm

TP FP TN FN Sensitivity Specificity

Alg1 74 10 126 0 100 % 92.65 %

Alg2 74 8 128 0 100 % 94.12 %

Alg3 74 9 127 0 100 % 93.38 %

With respect to the number of FP of Alg1 displayed in Table 3, most of them are due to
the ADL “sit down abruptly on a chair” movement (4 FP), followed by “get in and out of
the car” movement (3 FP). This means, that inmore than 50 % of the cases, these two ADL
originate FP. These are very similar movements, that can generally be classified as “sitting
abruptly”. The pattern for this type of movement resembles a fall, and therefore it poses
a real challenge to fall detection systems, especially the ones based solely on acceleration
signals. The remaining FP were caused by the ADL “kneel down to the floor” movement
(1 FP), and the ADL “lie down and stand up from the floor” movement (2 FP).
We also have tested two algorithms that only use the features SV and VA, and SV and

OD, and obtained specificity values of 46.10 and 40.28 %, respectively, which reveals that
these features are not reliable. These values can also be compared with those given in
Table 5.
The results obtained in this study seem to be in disagreement with some results

reported in the literature, but this discrepancy is apparent, and the reason is due to the
fact that the other authors use different location for the sensors and also the quality and
type of the chosen sensors is different from ours. For instance in [3], 100 % sensitivity and
specificity were obtained with an algorithm that is based only on gyroscope data. In our
data-set, an algorithm that relies only on SV, SVG, and SVGA results in 100 % sensitivity
and 71.84 % specificity. However, in [3] the authors use an improved gyroscope sensor
fixed to the trunk, which is a better place for the sensor in fall detection. We also tried to
extract vertical velocity features from the vertical acceleration in a similar way to the one
presented in [4]. However, our results were not satisfactory, while in that study the authors
also obtained 100 % sensitivity and specificity. But, again, we must stress that in this case
better sensors than ours were used, and in addition, the sensors were fixed to the trunk.

Remarks 1. A requirement demanding at least “24 h” for the minimum duration of the
battery life time of the smartphone, was indicated by our industrial partner. Therefore, in
order to check whether this requirement was fulfilled, experiments were performed in an
affordable device (smartphone) that is also provided by this industrial partner to its senior
care assistance services. The battery life time of this smartphone, without the proposed Alg1
installed, was approximately 28 h (1 day and 4 h). The experiments have shown there was
a gain of 50 % in the battery life time if a sampling frequency at 50 Hz is used, with respect
to the use of 100 Hz. Due to these results, and the fact that it was also observed that the
accuracy of the fall detection with the proposed method did not decrease significantly by

Table 4 Sensitivity and specificity results for Alg1 and Alg4, in a subset of the dataset that has the
gyroscope information (some data do not have the gyroscope information)

TP FP TN FN Sensitivity Specificity

Alg1 68 8 91 0 100 % 91.92 %

Alg4 68 6 93 0 100 % 93.94 %
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Table 5 Sensitivity and specificity results for a shorter Alg1 obtained by considering only two
different combinations among the 3 features SV, AV and CA

Features TP FP TN FN Sensitivity Specificity

SV + AV 74 38 98 0 100 % 72.06 %

SV + CA 74 56 80 0 100 % 58.82 %

AV + CA 74 19 117 0 100 % 86.03 %

the sampling frequency being fixed at 50 Hz instead of 100 Hz, the decision was to adopt
the sampling frequency at 50 Hz in real-life experiments.

Remarks 2. Finally we remark that we have conducted some experiments using a modi-
fied version of the fall detection algorithm Alg1, with the goal of decreasing the smartphone
battery consumption. The changes are listed below:

1. No low-pass filter is applied to the original acceleration signal.
2. In step 4 of algorithm Alg1 the maximum value of AV is computed in the time

interval centered in tsv with size 0.7s, instead of 2s as indicated before.
3. For the computation of feature CA the time interval [ tsv − 2, tsv + 2] of size 4s, is

replaced by a shorter time interval also centered in tsv, but with size 3s, and the
averages Āb and Āe are created by averaging the acceleration data over,
respectively, the first half second and last half second of this new window of size 3s.

The modified Alg1 with the changes 1, 2 and 3 produces a gain in the battery life time
of approximately 33 %, with respect to the original Alg1 (we remark that by removing the
low-pass filter the values for feature SV increase, therefore the value Csv was changed to
39). However, the experimental results reveal that the performance is a little bit worse as
shown in Table 6 (compare with Table 3). We observe that if we keep the low-pass filter the
results are very similar to those obtained with Alg1 in Table 3, and with the changes 2 and
3, only, there was not a significant increase in the battery life time.

Support vector machine classifier
In this section, we briefly discuss the results obtained with a support vector machine
(SVM) binary classifier on our dataset and compare SVM andAlg1 performances. For this
SVM classifier, we use exactly the same features of Alg1.
Before proceeding, we observe that in our study we did not consider the possibility

of implementing this type of SVM algorithm for fall detection in smartphones, because
as it requires more computational power than the threshold-based algorithms, it causes
some technical difficulties associated with the lack of energy and computing power in
smartphones devices. One possible solution to this problem would be to transmit the
data (or at least some of the data), in real time, to a remote computer to perform further
analysis. This procedure would allow the use of more sophisticated classificationmethods
like, for example, SVM, whose results are herein discussed.

Table 6 Sensitivity and specificity results for the modified fall detection algorithm Alg1
Modified Alg1 Sensitivity Specificity TP FP TN FN

Changes 1, 2 and 3 98.65 % 82.35 % 73 24 112 1

Changes 2 and 3 98.65 % 91.91 % 73 11 125 1
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For this experiment, the SVM Toolbox LIBSVM developed for Matlab software [5], and
the RBF (Radial Basis Function) kernel were adopted. In order to avoid over-fitting, two-
fold cross validation was employed. Therefore, our database was partitioned into two sets.
Each set contained equal number of falls and ADL, 37 and 68, respectively, and an attempt
was made to evenly distribute all the falls and ADLs across both sets.
Two parameters need to be optimized for SVM, a regularizing parameter, and another

one that is involved in the definition of the Gaussian (radial basis function) kernel. We
have followed the recommended “grid-search” procedure. Thus several pairs of these two
parameters were tried, and the one with the best accuracy for the cross-validation of the
testing sets was selected.
The classification performance was evaluated by the accuracy measure. The best accu-

racy results for the set of 3 features SV +AV +CA, and also for other combinations, with
only 2 out of these 3 features, are given in Table 7.
We point out the performance of the combination AV + CA is very similar to the one

obtained with SV + AV + CA. In fact, the same sensitivity was obtained and the speci-
ficity value is only slightly lower. These results confirm the quality of the three features,
especially AV and CA, to accurately classify fall and ADL events.
Finally, in Table 8, we reveal the number of actions that weremisclassified by SVMusing

the three features. It is interesting to note, that among the 5 FP, 4 are “sit down abruptly
on a chair” movements, and 1 is the ADL “kneel down to the floor” movement. These
5 actions, with the exception of 1 ADL “sit down abruptly on a chair” movement, were
already misclassified by the threshold-based approach Alg1. The 3 FN correspond to “a
lateral fall to the right ending lying”, “a forward fall with arm protection”, and “a walk and
fall ending lying”.
By comparing these results with those obtained for Alg1 in Section “Fall detection

algorithms and results”, we conclude that they are very similar, and consequently the
threshold-based algorithm Alg1, although simpler has a performance as good as the more
elaborated and complex SVM algorithm.

Comparative study
The MobiFall dataset [17] is a publicly available dataset, that was built with the objective
of testing new methods and doing comparative evaluation among different fall detection
algorithms, based on smartphone sensors. Therefore for further evaluating the perfor-
mance of the methods described herein and for comparison with the performance of
other existing fall detection algorithms (precisely those that are chosen in [17] for a com-
parative evaluation using the MobiFall dataset, and that are based on mobile phones or
smartphone devices only), we carried out experiments in the MobiFall dataset [17]. A
short description of this dataset is given in the next subsection.

Table 7 Performance of the SVM classifier

Features Accuracy Sensitivity Specificity

SV + AV + CA 96.19 % 95.95 % 96.32 %

SV + AV 85.24 % 82.43 % 86.77 %

SV + CA 88.57 % 85.14 % 90.44 %

AV + CA 95.71 % 95.95 % 95.59 %
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Table 8 Classification results for SV + AV + CA using SVM

Features TP FP TN FN

SV + AV + CA 71 5 131 3

The MobiFall dataset

This dataset was built by the Biomedical Informatics & eHealth Laboratory of the
Technological Educational Institute of Crete, Greece. It can be downloaded freely
(www.bmi.teicrete.gr) and we refer to [17] for a detailed description.
TheMobiFall dataset contains data collected by sixmale and five female subjects, whose

ages ranged from 22 to 36. Nine participants performed falls and ADLs, while two per-
formed only falls. Four different types of falls were simulated, and each fall was repeated
three times per subject. The ADL collection consists of nine different activities. Accord-
ing to the authors in [17] the ADLs were chosen based on their similarity to actual falls,
which may produce false positives. We remark that these ADLs are similar to the ones
presented in our dataset (Table 1). In total the dataset contains 132 Falls and 341 ADLs.
A description of the Falls and ADLs is given in Table 9.
For each movement the data from the accelerometer, orientation, and gyroscope

were recorded. The data were acquired using a Samsung Galaxy S3 smartphone with
accelerometer sampling frequency at 100Hz and amplitude range at±20m/s2 (we remark
that these values are identical to the ones used in our dataset, however a different smart-
phone was employed). The device was located in a trouser pocket arbitrarily chosen by
the subject in any random orientation, but for the falls the device was in the pocket on the
opposite side of the falling direction.

Results and discussion

In this section we do a comparative evaluation of the performance of the fall detection
algorithms described in this paper and those presented in [17]. First, we give in Table 10
a new set of thresholds for the features used in our algorithms Alg1, Alg3, and Alg4. As
before for the dataset described in this paper, and also in [17], this set of thresholds was

Table 9 Falls and ADLs recorded in the MobiFall dataset

ADL Total number

Standing with subtle movements 9

Normal walking 9

Jogging 27

Continuous jumping 27

Stairs up (10 stairs) 54

Stairs down (10 stairs) 54

Sitting on a chair 54

Step in a car 54

Step out a car 54

FALLS Total number

Fall forward from standing, use of hands to dampen fall 33

Fall forward from standing, first impact on knees 33

Fall sidewards from standing, bending legs 33

Fall backward while trying to sit on a chair 33

http://www.bmi.teicrete.gr
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Table 10 Thresholds adopted in the MobiFall dataset

Feature Fall value Fall description Threshold

SV 22.14 Fall backward while trying to sit on a chair Csv = 22

AV 6.94 Fall backward while trying to sit on a chair Cav = 6.9

CA 21.17 Fall sidewards from standing, bending legs Cca = 21

OD 238.43 Fall backward while trying to sit on a chair Cod = 236

SVG 3.82 Fall backward while trying to sit on a chair Csvg = 3.8

SVGA 53.65 Fall backward while trying to sit on a chair Csvga = 53

chosen in order to maximize the sensitivity. We remark that Alg2 was not considered in
this section since the linear acceleration data is not provided in the MobiFall dataset.
The results are presented in Table 11 and confirm our previously findings, namely, the

good performance of Alg1, which shows only a small decrease in specificity from 92.65 %
(Table 3) to 85.96 %, and the minor improvement obtained by Alg3 and Alg4. Once again
we emphasize the much lower computational and power requirements of Alg1, that only
relies on the accelerometer data, compared to Alg3 or Alg4. Moreover, a comparison with
the algorithms analyzed in [17], and whose results are also displayed in Table 11, shows
that the performance of Alg1 (as well as of Alg3 or Alg4) is better. In the analysis of these
results we must highlight the higher sensitivity of Alg1. A high sensitivity is crucial in
fall detection algorithms and in this sense Alg1 clearly outperforms the three algorithms
[7, 10, 14], and yet it still maintains a good specificity. In what concerns the FP registered
withAlg1 inMobiFall dataset, more than 40 % correspond to the “Car-step in” ADL, which
is in good agreement with the results obtained in our dataset, where also near 50 % of FP
where generated by the movement of the type “sitting abruptly” (described before).
We note that according to our experiments sampling frequencies of 50 or 100 Hz seem

to be enough for fall detection. We remark that the use of higher frequencies also brings
additional computational cost and battery consumption.

Conclusion
In this paper, we have analised smartphone sensors to determine their reliability to dis-
criminate between falls and ADL. Based on our results, the accelerometer appears to be
the most reliable sensor. Using the information provided by this sensor a novel algorithm
was proposed and tested. The algorithm Alg1 is simple and can easily be implemented
in smartphones platforms. In our data-set, its performance leads to 100 % sensitivity and
92.65 % specificity. The SVM analysis confirms the good performance of the proposed
methodology. A comparative study with the performance of three existing threshold
fall detection algorithms (based on smartphone sensors), using the same public dataset,
shows that the proposed algorithm is very competitive.

Table 11 Results for each algorithm in the MobiFall dataset

Method Sensitivity Specificity

Alg1 100 % 85.96 %

Alg3 100 % 86.26 %

Alg4 100 % 87.72 %

Sporaso and Tyson [14] 55 % 100 %

Dai et al. [7] 39 % 100 %

He et al. [10] 71 % 84 %
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In particular, we mention that in a real and blind test (the user did not know the fall
detection algorithm, proposed in this paper, was installed in the smartphone), with the
duration of one week, a total of 16 FPs were recorded, thus corresponding to a mean of 2
FPs per day. This user came from the target group of older users and it was verified that
he was carrying the device.
Moreover, we also observe that it is always possible to create a mechanism in the smart-

phone that permits the user to disable the alarm signal in case of an FP. However, this is
feasible only if the number of FPs is low, otherwise it might stress the user. Additionally,
the existence of an alarm signal (for instance a sound alarm), that is activated whenever a
fall is detected by the algorithm, can also be understood as a safety issue for the user. In
effect in this way the user realizes the system is working.
Furthermore, we emphasize that the particular locations indicated for the smartphone

and used in our study (in the trouser front pocket or in a belt worn around the hip) fasten
the smartphone to fixed positions of the body’s user, that are less prone to randommove-
ments. In this way the signals emitted by the sensors will likely lead to better results than
those generated by sensors located in regions of the body that are subject to a variety of
movements. Hence the detection of falls in other devices, as for instance wristwatches or
smartwatches, could be much more difficult, since the arms are parts of the human body
that generate many different types of movements. However, the detection of falls using
other devices is clearly challenging and may be the subject of future work.
The use of more advanced pattern recognition and machine learning techniques could

increase the robustness of the fall detection algorithm. However, such methods are com-
putationally prohibitive for smartphone environments, because of the battery power
consumption. In future work we intend to study alternative ways of solving this issue.
The results described herein are promising, but more experiments must be done and

other issues should be explored, e.g., the influence of individual physical factors and
smartphone location in the body should be further investigated. Furthermore, we also
need to address the false positive results generated by the ADL “sitting abruptly” move-
ment. Another, aspect that needs further study is the difference in acceleration signals
from simulated and real falls. The study presented in [2] suggests that there are important
differences, and the performance of fall detection algorithms with real data is seriously
affected. In cooperation with our industry partner we are now testing the algorithm in
real world environment. This will allow us to collect valuable data to explore these issues
in future research.
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